Abstract

Microbial infection, poor vascular regeneration and abnormal inflammation often impede the smooth repair of skin wounds, and these problems need to be effectively addressed. Baicalin is a natural flavonoid compound with a wide range of beneficial pharmacological effects, including antibacterial, angiogenic and anti-inflammatory properties. However, its clinical application is severely limited by poor water solubility and low bioavailability. In this study, we developed a multifunctional baicalin-coordinated borate ions/bacterial cellulose (Bai-B/BC) composite hydrogel at a low gelation concentration to promote chronic wound healing. On the one hand, the mechanical property of the self-assembled Bai-B hydrogel network was improved by the BC hydrogel network in the composite hydrogel; on the other hand, the self-assembled Bai-B hydrogel network gave the composite hydrogel the ability to self-heal and continuously release baicalin and boron ions. Importantly, baicalin and borate ions in Bai-B/BC composite hydrogel dressing played a synergistic pharmacological role in wound healing. The in vitro results showed that the Bai-B/BC hydrogel had excellent biocompatibility, antibacterial activity and anti-inflammatory effects in comparison with the control group and other hydrogel groups. Further in vivo studies displayed that the Bai-B/BC hydrogel significantly accelerated the healing process of chronic wound by promoting uniform and orderly collagen deposition, granulation tissue formation and vascular regeneration. The Bai-B-based self-assembled hydrogel is set to become a star dressing in the treatment of chronic wounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.