Abstract

The Zn dendrite and hydrogen evolution reaction have been a "stubborn illness" for the life span of zinc anodes, which significantly hinders the development of aqueous zinc batteries (AZBs). Herein, considering the ingenious molecular structure, a multifunctional additive based on the synergistic regulation of cations and anions at the interface is designed to promote a dendrite-free and stable Zn anode. Theoretical calculations and characterization results verified that the electrostatic shield effect of the cation, the solvation sheath structure, and the bilayer structural solid electrolyte film (SEI) jointly account for the uniform Zn deposition and side reaction suppression. Ultimately, a remarkably high average Coulombic efficiency (CE) of 99.4% is achieved in the Zn||Cu cell for 300 cycles, and a steady charge/discharge cycling over 3000 and 300 h at 1.0 mA cm-2/1.0 mAh cm-2 and 10 mA cm-2/10 mAh cm-2 is obtained in the Zn||Zn cell. Furthermore, the assembled full battery demonstrates a prolonged cycle life of 2000 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.