Abstract

Performance assessment, in which human raters assess examinee performance in a practical task, often involves the use of a scoring rubric consisting of multiple evaluation items to increase the objectivity of evaluation. However, even when using a rubric, assigned scores are known to depend on characteristics of the rubric’s evaluation items and the raters, thus decreasing ability measurement accuracy. To resolve this problem, item response theory (IRT) models that can estimate examinee ability while considering the effects of these characteristics have been proposed. These IRT models assume unidimensionality, meaning that a rubric measures one latent ability. In practice, however, this assumption might not be satisfied because a rubric’s evaluation items are often designed to measure multiple sub-abilities that constitute a targeted ability. To address this issue, this study proposes a multidimensional IRT model for rubric-based performance assessment. Specifically, the proposed model is formulated as a multidimensional extension of a generalized many-facet Rasch model. Moreover, a No-U-Turn variant of the Hamiltonian Markov chain Monte Carlo algorithm is adopted as a parameter estimation method for the proposed model. The proposed model is useful not only for improving the ability measurement accuracy, but also for detailed analysis of rubric quality and rubric construct validity. The study demonstrates the effectiveness of the proposed model through simulation experiments and application to real data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.