Abstract

Consider a random walk $S_{i}=\xi_{1}+\cdots+\xi_{i}$, $i\in\mathbb{N}$, whose increments $\xi_{1},\xi_{2},\ldots$ are independent identically distributed random vectors in $\mathbb{R}^{d}$ such that $\xi_{1}$ has the same law as $-\xi_{1}$ and $\mathbb{P}[\xi_{1}\in H]=0$ for every affine hyperplane $H\subset\mathbb{R}^{d}$. Our main result is the distribution-free formula \[\mathbb{E}\bigg[\sum_{1\leq i_{1}<\cdots<i_{k}\leq n}\mathbb{1}_{\{0\notin\operatorname{Conv}(S_{i_{1}},\ldots,S_{i_{k}})\}}\bigg]=2\binom{n}{k}\frac{B(k,d-1)+B(k,d-3)+\cdots}{2^{k}k!},\] where the $B(k,j)$’s are defined by their generating function $(t+1)(t+3)\ldots(t+2k-1)=\sum_{j=0}^{k}B(k,j)t^{j}$. The expected number of $k$-tuples above admits the following geometric interpretation: it is the expected number of $k$-dimensional faces of a randomly and uniformly sampled open Weyl chamber of type $B_{n}$ that are not intersected by a generic linear subspace $L\subset\mathbb{R}^{n}$ of codimension $d$. The case $d=1$ turns out to be equivalent to the classical discrete arcsine law for the number of positive terms in a one-dimensional random walk with continuous symmetric distribution of increments. We also prove similar results for random bridges with no central symmetry assumption required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.