Abstract

Automatic identification of animal species by their vocalization is an important and challenging task. Although many kinds of audio monitoring system have been proposed in the literature, they suffer from several disadvantages such as non-trivial feature selection, accuracy degradation because of environmental noise or intensive local computation. In this paper, we propose a deep learning based acoustic classification framework for Wireless Acoustic Sensor Network (WASN). The proposed framework is based on cloud architecture which relaxes the computational burden on the wireless sensor node. To improve the recognition accuracy, we design a multi-view Convolution Neural Network (CNN) to extract the short-, middle-, and long-term dependencies in parallel. The evaluation on two real datasets shows that the proposed architecture can achieve high accuracy and outperforms traditional classification systems significantly when the environmental noise dominate the audio signal (low SNR). Moreover, we implement and deploy the proposed system on a testbed and analyse the system performance in real-world environments. Both simulation and real-world evaluation demonstrate the accuracy and robustness of the proposed acoustic classification system in distinguishing species of animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.