Abstract

In this paper, we investigate the deep learning applications of radio automatic modulation recognition (AMR) applications in unmanned aerial vehicle (UAV)-to-ground AMR systems. The integration of deep learning in a UAV-aided signal processing terminal can recognize the modulation mode without the provision of parameters. However, the layers used in current models have a small data processing range, and their low noise resistance is another disadvantage. Most importantly, large numbers of parameters and high amounts of computation will burden terminals in the system. We propose a multi-subsampling self-attention (MSSA) network for UAV-to-ground AMR systems, for which we devise a residual dilated module containing ordinary and dilated convolution to expand the data processing range, followed by a self-attention module to improve the classification, even in the presence of noise interference. We subsample the signals to reduce the number of parameters and amount of calculation. We also propose three model sizes, namely large, medium, and small, and the smaller the model, the more suitable it will be for UAV-to-ground AMR systems. We conduct ablation experiments with state-of-the-art and baseline models on the common AMR and radio machine learning (RML) 2018.01a datasets. The proposed method achieves the highest accuracy of 97.00% at a 30 dB signal-to-noise ratio (SNR). The weight file of the small MSSA is only 642 KB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.