Abstract
A multi-stage krill herd (MSKH) algorithm is presented to fully exploit the global and local search abilities of the standard krill herd (KH) optimization method. The proposed method involves exploration and exploitation stages. The exploration stage uses the basic KH algorithm to select a good candidate solution set. This phase is followed by fine-tuning a good candidate solution in the exploitation stage with a focused local mutation and crossover (LMC) operator in order to enhance the reliability of the method for solving global numerical optimization problems. Moreover, the elitism scheme is introduced into the MSKH method to guarantee the best solution. The performance of MSKH is verified using twenty-five standard and rotated and shifted benchmark problems. The results show the superiority of the proposed algorithm to the standard KH and other well-known optimization methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Artificial Intelligence Tools
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.