Abstract

Rhythms in female reproduction are critical to insure that timing of ovulation coincides with oocyte maturation and optimal sexual arousal. This fine tuning of female reproduction involves both the estradiol feedback as an indicator of oocyte maturation, and the master circadian clock of the suprachiasmatic nuclei (SCN) as an indicator of the time of the day. Herein, we are providing an overview of the state of knowledge regarding the differential inhibitory and stimulatory effects of estradiol at different stages of the reproductive axis, and the mechanisms through which the two main neurotransmitters of the SCN, arginine vasopressin, and vasoactive intestinal peptide, convey daily time cues to the reproductive axis. In addition, we will report the most recent findings on the putative functions of peripheral clocks located throughout the reproductive axis [kisspeptin (Kp) neurons, gonadotropin-releasing hormone neurons, gonadotropic cells, the ovary, and the uterus]. This review will point to the critical position of the Kp neurons of the anteroventral periventricular nucleus, which integrate both the stimulatory estradiol signal, and the daily arginine vasopressinergic signal, while displaying a circadian clock. Finally, given the critical role of the light/dark cycle in the synchronization of female reproduction, we will discuss the impact of circadian disruptions observed during shift-work conditions on female reproductive performance and fertility in both animal model and humans.

Highlights

  • Ovulation in female mammals is a complex process, which is exquisitely regulated by a number of environmental and internal factors

  • In adult females where all these criteria are attained, there are still two important cues that time ovulation: the circulating level of gonadal hormones, estradiol, which is an indicator of oocyte maturation, and the time of day arising from biological clocks

  • At the end of the reproductive cycle, LH pulse frequency decreases significantly down to a pulse interval of 2–6 h with variable amplitude [8]. The secretion of both LH and follicle-stimulating hormone (FSH) is under the control of a hypothalamic neurohormone, gonadotropin-releasing hormone (GnRH), which is synthesized in neurons scattered throughout the preoptic area (POA) and the organum vasculosum laminae terminalis

Read more

Summary

Introduction

Ovulation in female mammals is a complex process, which is exquisitely regulated by a number of environmental (time of day, time of year, food resources, and stress level) and internal (development stage, hormonal milieu, and metabolic rate) factors. Reproductive activity in female mammals displays a regular cycle (menstrual cycles in women, estrous cycles in rodents) driven by a complex interaction of the circadian system, hypothalamic neuropeptides, gonadotropins [luteinizing hormone (LH) and follicle-stimulating hormone (FSH), both secreted by the pituitary gonadotroph cells], and sex steroid hormones produced by the ovaries. At the end of the reproductive cycle, LH pulse frequency decreases significantly down to a pulse interval of 2–6 h with variable amplitude [8] The secretion of both LH and FSH is under the control of a hypothalamic neurohormone, gonadotropin-releasing hormone (GnRH), which is synthesized in neurons scattered throughout the preoptic area (POA) and the organum vasculosum laminae terminalis. Glutamate stimulates Gnrh gene physical activity/sleep light/dark cycle

D LH surge
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.