Abstract

This study presents a hybrid approach to integrate the comprehensive sensitivity analysis method, support vector machine technology, modified non-dominated sorting genetic algorithm-II method and the technique for order preference by similarity to ideal solution, which have been applied to multi-objective lightweight optimization of the B-pillar structure of an automobile. First, numerical models of the static–dynamic stiffness and the crashworthiness performance of automobile are established and validated by experimental testing. Then, the comprehensive sensitivity analysis method is used to define the final optimization variables. Experimental design and support vector machine based surrogate model techniques are introduced to establish the approximate model; subsequently, the modified non-dominated sorting genetic algorithm-II algorithm is applied to the multi-objective lightweight optimization design of the B-pillar structure, and the non-dominated solution set is determined. The principal component analysis method is applied to determine the weight of each objective. Finally, the technique for order preference by similarity to ideal solution method is used to rank Pareto front from best to worst to obtain the optimal solution; furthermore, a comparison between the original model and optimized design denotes that the mass of the B-pillar being reduced by 22.55% under the other impacting indicators is well guaranteed. Therefore, the proposed hybrid approach provided promising prospects in the lightweight and crashworthiness optimization application of the B-pillar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.