Abstract

Iterative learning control (ILC) is a method for improving the performance of stable, repetitive systems. Standard ILC is constructed in the temporal domain, with performance improvements achieved through iterative updates to the control signal. Recent ILC research focuses on reformulating temporal ILC into the spatial domain, where 2D convolution accounts for spatial closeness. This work expands spatial ILC to include optimization of multiple performance metrics. Performance objectives are classified into primary, complementary, competing, and domain specific objectives. New robustness and convergence criteria are provided. Simulation results validate flexibility of the spatial framework on a high-fidelity additive manufacturing system model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.