Abstract

This paper proposes an ant colony optimization algorithm to assist railroad yard operational planning staff in their daily tasks. The proposed algorithm tries to minimize a multi-objective function that considers both fixed and variable transportation costs involved in moving railroad cars within the railroad yard area. This is accomplished by searching the best switch engine schedule for a given time horizon. As the algorithm was designed for real life application, the solution must be delivered in a predefined processing time and it must be in accordance with railroad yard operational policies. A railroad yard operations simulator was built to produce artificial instances in order to tune the parameters of the algorithm. The project is being developed together with industrial professionals from the Tubarão Railroad Terminal, which is the largest railroad yard in Latin America.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.