Abstract

Signature-based protein sensing has recently emerged as a promising prospective alternative to conventional lock-and-key methods. However, most of the current examples require the measurement of optical signals from spatially-separated materials for the generation of signatures. Herein, we present a new approach for the construction of multi-fluorescent sensing systems with high accessibility and tunability, which allows generating protein fluorescent signatures from a single microplate well. This approach is based on conjugates between nano-graphene oxide (nGO) and three single-stranded DNAs (ssDNAs) that exhibit different sequences and fluorophores. Initially, the three fluorophore-modified ssDNAs were quenched simultaneously by binding to nGO. Subsequent addition of analyte proteins caused a partial recovery in fluorescent intensity of the individual ssDNAs. Based on this scheme, we have succeeded in acquiring fluorescence signatures unique to (i) ten proteins that differ with respect to pI and molecular weight and (ii) biochemical marker proteins in the presence of interferent human serum. Pattern-recognition methods demonstrated high levels of discrimination for this system. The high discriminatory power and simple format of this sensor system should enable an easy and fast evaluation of proteins and protein mixtures.

Highlights

  • The accurate identification of proteins is of critical importance for the understanding of a variety of biological processes and diseases [1,2]

  • These single-stranded DNAs (ssDNAs) bear different sequences, and two of these can fold into different higher-order structures, which were expected to impart the individual elements of the sensor system with differential cross-reactivity [38,39]

  • We have developed a multi-fluorescent ssDNAs/nano-graphene oxide (nGO) sensor for the discrimination of proteins

Read more

Summary

Introduction

The accurate identification of proteins is of critical importance for the understanding of a variety of biological processes and diseases [1,2]. Signature-based sensing has emerged as a promising prospective alternative to lock-and-key specific recognition [4,5]. A subsequent pattern-recognition of the -obtained signatures enables the accurate identification of proteins. Signature-based sensing has been successfully employed for the detection of proteins in dilute solutions [6,7,8,9,10,11,12,13,14,15,16,17] and in biological matrices [18,19,20,21,22,23,24,25,26,27]. Most of the current examples require the measurement of optical signals from spatially-separated materials for the generation of signatures, e.g., in multiple wells of a microplate, which significantly limits the scope for applications that depend on a simple and rapid identification of proteins

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.