Abstract

To accurately capture the dynamics of a large-scale ac/dc system as a whole and the interactions between its individual components, a simulation method with high precision and efficiency is in great demand. For this purpose, we develop a multi-domain co-simulation method, in which the target system is partitioned into multiple dc and ac subsystems, represented by our proposed shifted-frequency phasor (SFP) models and the traditional EMT models, respectively. SFP models can be simulated with a much larger time step, leading to a significant improvement in simulation efficiency under a given requirement of precision. Further, a new interface model, namely, hybrid multi-domain transmission-line model (HMD-TLM), is developed to reflect the interactions between SFP models and EMT models, with the additional benefit of producing instantaneous and phasor waveforms simultaneously. Thus, the multi-domain co-simulation is implemented based on the efficient SFP models, the HMD-TLM, and a designed time sequences of simulation. The performance (efficiency and accuracy) of the proposed method has been validated on the well-known CIGRE ac/dc system as well as a practical system integrating large ac grids and modular-multilevel-converter-based multi-terminal dc grids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.