Abstract

Industrial waste heat is currently underutilized due to the techno-economic challenges, inherent variability and intermittency of this source. To overcome the existing barriers, reduce the emission of greenhouse gases and protect the global environmental conditions, energy recovery is one of the most effective strategies. In the design of heat storage systems, the material selection procedure plays an important role and requires complex interrelationships between the various factors and parameters to be elucidated toachieve the best candidate material for a given application. This paper presents a Multi-Criteria Decision Making (MCDM) methodology based on Graph Theory and Matrix approach for high temperature thermochemical storage (TCS) material selection. Furthermore, the presented approach has been used to select the suitable candidate material for recovering the high temperature waste heat (over 500 °C) in Port Talbot Steelworks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.