Abstract
Multi-class classification is an important pattern recognition task that can be addressed accurately and efficiently by Support Vector Machine (SVM). In this work we present a novel SVM-based multi-class classification approach based on the center of the configuration, a point which is equidistant to all classes. The center of the configuration is obtained from the dual formulation by minimizing the distances between the reduced convex hulls using the l1-norm, while the decision functions are subsequently constructed from this point. This work also extends the ideas of Zhou et al. (2002) [37] to multi-class classification. The use of l1-norm provides a single linear programming formulation, which reduces the complexity and confers scalability compared with other multi-class SVM methods based on quadratic programming formulations. Experiments on benchmark datasets demonstrate the virtues of our approach in terms of classification performance and running times compared with various other multi-class SVM methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.