Abstract

We consider a possibility of the existence of intersection homology morphism, which would be associated to a map of analytic varieties. We assume that the map is an inclusion of codimension one. Then the existence of a morphism follows from Saito's decomposition theorem. For varieties with conical singularities we show, that the existence of intersection homology morphism is exactly equivalent to the validity of Hard Lefschetz Theorem for links. For varieties with arbitrary analytic singularities we extract a remarkable property, which we call Local Hard Lefschetz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.