Abstract

Enolases are generally thought of as cytoplasmic enzymes involved in glycolysis and gluconeogenesis. However, several bacteria have active forms of enolase associated with the cell surface and these proteins are utilized for functions other than central metabolism. Recently, a surface-associated protein produced by Lactobacillus gasseri ATCC 33323 with homology to enolase was found to inhibit the adherence of the sexually transmitted pathogen, Neisseria gonorrhoeae, to epithelial cells in culture. Here, we show that the protein is an active enolase in vitro. A recombinantly expressed, C-terminal His-tagged version of the protein, His6-Eno3, inhibited gonococcal adherence. Assays utilizing inhibitors of enolase enzymatic activity showed that this inhibitory activity required the substrate-binding site to be in an open conformation; however, the enolase enzymatic activity of the protein was not necessary for inhibition of gonococcal adherence. An L. gasseri strain carrying an insertional mutation in eno3 was viable, indicating that eno3 is not an essential gene in L. gasseri 33323. This observation, along with the results of the enzyme assays, is consistent with reports that this strain encodes more than one enolase. Here we show that the three L. gasseri genes annotated as encoding an enolase are expressed. The L. gasseri eno3 mutant exhibited reduced, but not abolished, inhibition of gonococcal adherence, which supports the hypothesis that L. gasseri inhibition of gonococcal adherence is a multifactorial process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.