Abstract

In recent years, heavy metal contamination of soils has been increasing, posing a major threat to food security, human health, and soil ecosystems. This study analyzed the spatial characteristics, contamination sources, risks of heavy metals by collecting topsoil samples from farmland in an oasis agricultural region in northwest China. The results found that soil heavy metals in farmland were at a moderate contamination level. The PMF model classifies soil heavy metals as fertilizer and pesticide sources dominated by As and Mn with 27.8 %, mixed sources of transport and agricultural sources dominated by Cu, Zn, Cd and Pb with 26.9 %, metal processing sources dominated by Cr and Ni with 22.6 %, and the combined pollution sources of Ti, V, Cr, Mn, Fe, As, Pb dominated by natural sources and fuel combustion. The noncarcinogenic and carcinogenic risks values from the ingestion route were higher for children than for adults. The non-carcinogenic risk of heavy metals to adults in the southwestern and central regions of the study area was >1 × 10−4. The carcinogenic risk was >1 in all adults, but >1 in children in the central and southwestern study areas. Monte Carlo simulation takes into account the parameters and their distributions that affect the health risk assessment model by combining the uncertainty assessment with the health risk, which will reduce the uncertainty of the health risk assessment. The results showed that conventional deterministic risk assessment may overestimate health risk outcomes. In addition, As has a 1.85 % probability of non-carcinogenic risk to children, and an 85.3 % probability of total non-carcinogenic risk for children for all heavy metals. 69.5 % and 11.4 % probability of carcinogenic risk for children and adults respectively for Ni, and 96.4 % and 52.1 % probability of total carcinogenic risk, suggesting that Ni is a priority control heavy metal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.