Abstract

Simulating three transport phenomena-ionic conductivity, viscosity, and self-diffusion coefficient-in a common Monte-Carlo framework, we discuss their relationship to the intermolecular interactions of electrolyte solutions at high concentrations (C/mol l-1 ∼ 1). The simulation is predicated on a pseudolattice model of the solution. The ions and solvents (collectively termed "molecules") are considered dimensionless points occupying the lattice sites. The molecular transport is realized by a repetition of swapping two adjacent molecules by the stochastic Gibbs sampling process based on simple intermolecular interactions. The framework has been validated by the fact that the simulated ionic conductivity and dynamic viscosity of 1:1- and 2:1-salts qualitatively well represent the experimental data. The magnitude of the Coulombic interaction itself is not reflected in the ionic conductivity, but the extent to which the Coulombic interaction is shielded by the dielectric constant has a significant influence. On the other hand, the dielectric constant barely influences the viscosity, while the magnitude of the Coulombic interaction is directly reflected in the viscosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.