Abstract

Due to the lack of theoretical basis for the determination of process parameters, there are problems such as incomplete melting and excessive melting in the molten pool for laser processing, which ultimately cause the increase of defects such as air hole and crack. The melting behavior of Ti–Al binary alloy during laser processing is studied on the atomic scale by molecular dynamics simulation. The embedded atom method potential is adopted to establish the melting model of Ti–Al binary alloy. According to the changes of temperature, atomic structure and mean square displacement, the influence of different process parameters on the melting behavior of Ti–Al binary alloy is discussed. The results show that a short temperature drops from initial melting to complete melting. Mean square displacement increases rapidly with the increase of laser time after completely melting. The atoms start to move violently and the atomic structure is completely transformed into other structure. The heating and cooling rate increases with the increase of power. The laser power has little effect on the overall distribution of atoms after completely melting and only affects the variation rate of various physical quantities in melting process. The research results provide a deeper practical and theoretical evidence for the determination and optimization of the 3D printing and laser heat treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.