Abstract

Addition of lead dopant has been known to be an effective way of mitigating whisker growth in tin. However, the toxic nature of lead has necessitated a search for alternative dopant species. Recent investigations have indicated that indium can be an effective agent in reducing whisker growth. In an effort to investigate if reduction in diffusivity of tin atoms near grain boundaries in presence of dopant atoms is the underlying mechanism that causes reduced whisker growth, we employed molecular dynamics simulations to model tin grain boundaries with lead and indium dopants. We simulated pure tin grain boundary as well as grain boundaries with 4% dopants by mole fraction. Our results indicate that the dopant atoms segregate near the grain boundary and forms clusters, which in turn leads to reduced diffusivity of tin atoms by up to a factor of three. Since such reduction in diffusivity alone cannot reduce whisker growth by several orders of magnitude, we conclude that other mechanisms might play a more dominant role in mitigating tin whisker growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.