Abstract

Speyer recognized that matroids encode the same data as a special class of tropical linear spaces and Shaw interpreted tropically certain basic matroid constructions; additionally, Frenk developed the perspective of tropical linear spaces as modules over an idempotent semifield. All together, this provides bridges between the combinatorics of matroids, the algebra of idempotent modules, and the geometry of tropical linear spaces. The goal of this paper is to strengthen and expand these bridges by systematically developing the idempotent module theory of matroids. Applications include a geometric interpretation of strong matroid maps and the factorization theorem; a generalized notion of strong matroid maps, via an embedding of the category of matroids into a category of module homomorphisms; a monotonicity property for the stable sum and stable intersection of tropical linear spaces; a novel perspective of fundamental transversal matroids; and a tropical analogue of reduced row echelon form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.