Abstract

This work presents a modular power system planning and power flow simulation framework for the generation and evaluation of power network models (PNM) using spatially resolved demand data. It targets users who want to study large-scale power grids having only limited information on the actual power system. Besides creating cost minimal PNMs, users are able to flexibly configure the framework to produce PNMs individually tailored to their specific use cases. Both greenfield and expansion planning are possible. The framework further comprises a built-in ac power flow simulation designed to simulate power flows in large-scale networks. This allows users to conduct a great variety of simulation studies on entire power systems, which would otherwise not be possible without access to comprehensive power grid data. Apart from the presentation of the methodology, this work comprises a demonstration of the power system planning process at the example of Singapore. The investigation shows that the framework is capable of generating a network that matches the topological and electrical metrics of the Singapore power grid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.