Abstract

Abstract This paper describes a dynamic framework for an atmospheric general circulation spectral model in which a reference stratified atmospheric temperature and a reference surface pressure are introduced into the governing equations so as to improve the calculation of the pressure gradient force and gradients of surface pressure and temperature. The vertical profile of the reference atmospheric temperature approximately corresponds to that of the U.S. midlatitude standard atmosphere within the troposphere and stratosphere, and the reference surface pressure is a function of surface terrain geopotential and is close to the observed mean surface pressure. Prognostic variables for the temperature and surface pressure are replaced by their perturbations from the prescribed references. The numerical algorithms of the explicit time difference scheme for vorticity and the semi-implicit time difference scheme for divergence, perturbation temperature, and perturbation surface pressure equation are given in detail. The modified numerical framework is implemented in the Community Atmosphere Model version 3 (CAM3) developed at the National Center for Atmospheric Research (NCAR) to test its validation and impact on simulated climate. Both the original and the modified models are run with the same spectral resolution (T42), the same physical parameterizations, and the same boundary conditions corresponding to the observed monthly mean sea surface temperature and sea ice concentration from 1971 to 2000. This permits one to evaluate the performance of the new dynamic framework compared to the commonly used one. Results show that there is a general improvement for the simulated climate at regional and global scales, especially for temperature and wind.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.