Abstract

A resistive grid model was used to study the current and ohmic overpotential distributions along the surface of lead-acid battery electrodes. Analyses were made under two different regimes: the initial behaviour at high current densities and the response with time at low current densities. At high discharge currents the theoretical results show that the geometry of the electrodes and the position of the lug play the most important role in controlling the magnitude of ohmic losses. The best geometry is a square grid with the lug positioned at the upper centre of the electrode. At low discharge currents the model was used to follow the current distribution along the electrode surface as a function of time. In this last study the appearance, for long discharge times, of short-circuited concentration microcells localized in certain regions of the electrode surface was noted. The other regions of the electrode supply the external discharge current and the excess current necessary to charge the internal microcell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.