Abstract

A generalized formalism is developed to model second-order nonlinear processes in finite-difference time-domain (FDTD) simulations. The method is capable of modeling frequency-conversion from all 18 elements of the second-order nonlinear tensor, where dispersion of the tensor elements is included at both the pump and generated frequencies. The model is validated by considering frequency-conversion in a LiNbO3 crystal, which has highly dispersive second-order nonlinear susceptibilities near the phonon resonances. The developed nonlinear formalism is able to model any arbitrary excitation polarization state and can be applied to investigate second-order nonlinear processes in type I or type II phase-matching. This generalized second-order nonlinear formalism represents an advancement for the FDTD computational technique and can provide more realistic modeling of second-order nonlinear interactions in nanoscale devices and waveguiding structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.