Abstract

The segmental relaxation time data for poly(vinyl acetate), poly(vinyl chloride), and linear and star polystyrene are analyzed using a model-free method to determine how the temperature- and pressure-dependent relaxation times, τ, scale with the relative configurational thermodynamic properties. The model-free method assumes no specific mathematical form, such as reciprocal linearity, and the configurational properties are referred to an isochronal state to eliminate the bias associated with the definition of the ideal glassy state. The scaling ability of a given configurational property is strongly material-dependent with the logarithm of τ scaling better with TSc and Hc for poly(vinyl acetate), with TSc, Hc, and Uc for poly(vinyl chloride), and with TSc, Hc, and Vc for linear and star polystyrene. The choice of the isochronal reference state does not qualitatively affect the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.