Abstract

The direct power control (DPC) technique has been widely used as a control strategy for three-phase power rectifiers due to its simplicity and good performance. DPC uses the instantaneous active and reactive power to control the power converter. The controller design has been proposed as a direct control with a lookup table and, in recent works, as an indirect control with an inner control loop with proportional-plus-integral controllers for the instantaneous active and reactive power errors. In this paper, a model-based DPC for three-phase power converters is designed, obtaining expressions for the input control signal, which allow the design of an adaptive control law that minimizes the errors introduced by parameter uncertainties as the smoothing inductor value or the grid frequency. A controller design process, a stability study of the system, and experimental results for a synchronous three-phase power rectifier prototype are presented to validate the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.