Abstract

AbstractA one‐dimensional heat transfer model with phase change is applied to the entire Arctic terrestrial drainage area. The main forcing parameters are reanalysed surface air temperature that was topography‐enhanced, and snow depth, derived from passive microwave satellite data. We present results based on daily fields of soil temperature, ranging from the soil surface down to 14 m depth. The horizontal grid cell resolution is 25 km × 25 km. Model results are compared to several long series of soil temperature measurements from Alaska and Siberia, with a relatively good match of the the annual cycle at different depths. We show time series of soil temperature at different depths for the 22‐year period 1980 through 2001, and both seasonal and regional analyses are included. A trend analysis reveals positive trends for all permafrost regions in response to positive trends in air temperature, with the strongest warming trend in regions of continuous permafrost. A slight cooling trend is only found for the topmost soil layers in regions of seasonally frozen ground at the southern margins of the Arctic drainage domain. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.