Abstract

This paper deals with modeling the passive behavior of skeletal muscle tissue including certain microvibrations at the cell level. Our approach combines a continuum mechanics model with large deformation and incompressibility at the macroscale with chains of coupled nonlinear oscillators. The model verifies that an externally applied vibration at the appropriate frequency is able to synchronize microvibrations in skeletal muscle cells. From the numerical analysis point of view, one faces here a partial differential-algebraic equation (PDAE) that after semi-discretization in space by finite elements possesses an index up to three, depending on certain physical parameters. In this context, the consequences for the time integration as well as possible remedies are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.