Abstract

The relative progression of lateral shoot elongation from pinch to flower of chrysanthemum [Dendranthema grandiflora (Ramat.) Kitamura `Bright Golden Anne'] plants grown under 2 to 22 mol·day-1·m-2 photosynthetic photon flux and 10 to 20C was modeled using Richards function. Parameters for the function were determined by first transforming data of shoot length and time from pinch (start of short photoperiods) to flower to a relative scale of 0.0 to 1.0 by dividing all intermediate shoot lengths and measurement dates by final shoot length and number of days to flower, respectively. Data used for parameter estimation originated with plants grown at a daily average of ≤20C, since those grown at a daily average above 20C exhibited delayed morphological flower induction and reached 50% of the final shoot length earlier in development. Relative shoot elongation was described by Richards function in the following form: Relative shoot length = SF × {1 + [(SF/SO)N-1] e-SF Kt}-1/N where t (relative time) = 0.0 to 1.0, SF (maximum relative shoot length) = 1.018, SO (relative shoot length at t = o) = 0.0131, N (model parameter related to the shape of the curve) =0.3923, and K (model parameter related to mean relative growth rate) = 5.8138.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.