Abstract

A new mechanism to segregate daughter genomes in bacterial cells is suggested that is based upon the rules of geometry governing the helix clock (Mendelson, 1982a). The reorientation of cell surface string arrays used as a timing reference in the helix clock is capable of drawing apart the initial products of DNA replication. Physically linking the sister DNA replication origins to the ends of the initial cell surface string inserted into the cell surface at the start of a helix clock cycle, and linking the DNA terminus to a point along the length of the same string provides a means to mark the locations to which the genomes will segregate as well as the place where cell division will occur. The parallel packing of additional cell surface strings into an array which includes the string to which DNA is attached provides the necessary spatial rearrangements. The helical segregation model can account for the precise registration of cell divisions with the completion of replication forks in a multifork replication system, provides a basis for determining the relationship of sister cell sizes at division, and can also accommodate the asymmetrical divisions associated with minicell production and sporulation. Examination of the helical segregation theory under multifork DNA replication conditions moreover reveals that adjacent helical clocks are physically linked to one another although totally independent in terms of their progression through the clock cycle. A relationship between the initiation of DNA replication forks and the insertion of the first cell surface string associated with the start of a helix clock cycle is predicted by the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.