Abstract

Plastids possess a bacteria-like sec apparatus that is involved in protein import into the thylakoid lumen. We have analyzed one of the genes essential for this process, secY. A secY gene from the unicellular red alga Cyanidium caldarium was found to be transcriptionally active, demonstrating for the first time that secY is functional in a plastid. Unlike the situation seen in bacteria the C. caldarium gene is transcribed monocistronically, despite the fact that it is part of a large ribosomal gene cluster that resembles bacterial spc operons. A molecular phylogeny is presented for 8 plastid-encoded secY genes, four of which have not been published yet. In this analysis plastid secY genes fall into two classes. One of these, comprising of genes from multicellular red algae and Cryptophyta, clusters in a neighbour-joining tree with a cyanobacterial counterpart. Separated from the aforesaid are secY genes from Chromophyta, Glaucocystophyta and a unicellular red alga. All plastid and cyanobacterial sequences are located on the same branch, separated from bacterial homologues. We postulate that the two classes of secY genes are paralogous, i.e. their gene products are involved in different protein translocation processes. Based on this assumption a model for the evolution of the plastid sec apparatus is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.