Abstract
Reproductive skew is a measure of the way breeding is distributed among the members of an animal society or group. Up to now, explanations of patterns of skew have been limited to one particular model, which assumes that a single dominant has full control over the distribution of subordinate reproduction. If this control is incomplete or absent, however, unsanctioned breeding by subordinate females will increase the total number of young produced. Here I present a new model for the evolution of skew that considers the effect of brood size on the inclusive fitness of dominants and subordinates. By augmenting brood size, a subordinate female reduces the per capita fitness of a dominant's offspring, so the net benefits of producing young are lower for related subordinates. I consider the stable level of skew when both dominant and subordinate attempt to maximize their inclusive fitness under two conditions: (1) when the dominant is unable to anticipate that a subordinate will add to her brood; and (2) the dominant does anticipate subordinate reproduction and can respond by adjusting her own brood size. In the first case, the model predicts that reproductive skew will increase with relatedness between breeders, because related subordinates are selected to add fewer young to the dominant's brood. In the second case, the dominant's optimal response to the presence of a second breeder exaggerates the relationship between relatedness and skew: dominants should produce more young when breeding with related compared with unrelated subordinates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.