Abstract

We derive and analyze a 2D model for plasmons, in order to understand the general preconditions for the appearance of THz plasmons in low-dimensional nanosystems like graphene. Using experimental data and back of the envelope type calculations, we discuss the typical frequency ranges of plasmon resonances in such systems. Next we compare our results to recent ab initio calculations for ideal graphene, and show that these are consistent with the predictions of a 3D plasmon model, rather than a 2D model. The validity of the ab initio calculation does not extend to long-wavelength regime where our 2D model holds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.