Abstract

The aim of this study was to develop a practically usable model to describe the influence of increased gas density on the gas holdup in bubble column reactors. In order to develop an insight into this effect, we performed extensive sets of experiments at pressures ranging from 0.1 MPa to 2 MPa and with several gases (nitrogen, carbon dioxide, argon, helium and sulphur hexafluoride) in de-ionized water in a 0.16 m diameter bubble column. A careful analysis of the experimental results shows that the major effect of increased gas density is to stabilize the regime of homogeneous bubble flow and, consequently, to delay the transition to the churn-turbulent flow regime. The superficial gas velocity at this regime transition point, U trans, was found to be a unique function of the gas density, encompassing both effects of pressure and molar mass. To elucidate the hydrodynamics in the two regimes, dynamic gas disengagement experiments were carried out in a 0.19 m diameter bubble column with four liquids (water, turpentine, n-butanol and mono-ethylene glycol) using nitrogen at 0.1 MPa. These results showed that the churn-turbulent regime is characterized by a bi-modal bubble size distribution, consisting of fast rising large bubbles (typically 5 cm diameter or larger) and small bubbles (typically ⩽ 5 mm diameter). In the churn-turbulent regime the holdup of the small bubbles was found to be virtually constant. The regime transition velocity U trans was found to depend on the liquid properties. A simple model for describing the gas holdup is also proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.