Abstract

Choline acetyltransferase (ChAT) synthesizes the neurotransmitter acetylcholine (ACh) and is a phenotypic marker for cholinergic neurons. Cholinergic neurons in brain are involved in cognitive function, attentional processing and motor control, and decreased ChAT activity is found in several neurological disorders including Alzheimer's disease. Dysregulation of ChAT and cholinergic communication is also associated with some spontaneous point-mutations in ChAT that alter its substrate binding kinetics, or by disruption of signaling pathways that could regulate protein kinases for which ChAT is a substrate. It has been identified recently that the catalytic activity and subcellular distribution of ChAT, and its interaction with other cellular proteins, can be modified by phosphorylation of the enzyme by protein kinase-C and Ca2+/calmodulin-dependent protein kinase II; these kinases appear also to mediate some of the effects of beta-amyloid peptides on cholinergic neuron functions, including the effects on ChAT. This review outlines a new model for the regulation of cholinergic transmission at the level of the presynaptic terminal that is mediated by hierarchically-regulated, multi-site phosphorylation of ChAT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.