Abstract

The focus of this paper is on distributed consensus filtering in two-dimensional (2D) space for stochastic nonlinear parabolic systems with disturbances. Distributed filters are used in mobile sensor networks to achieve consensus estimate. By utilizing a mobile sensing approach, the optimal framework for parabolic systems to improve filtering performance is provided. Sufficient conditions are created under the filtering error is boundedness by employing operator-dependent Lyapunov functional. The velocity law of each mobile sensor can also be used to guide the filtering error system toward rapid convergence. Finally, numerical examples are used to verify the effectiveness of the suggested approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.