Abstract
While the chirp signal is extensively used in radar and sonar systems for target decision in wireless communication systems, it has not been widely used for positioning in indoor environments. Recently, the IEEE 802.15.4a standard has adopted the chirp spread spectrum (CSS) as an underlying technique for low-power and low-complexity precise localization. Chirp signal based ranging solutions have been established and deployed but their ranging performance has not been analyzed in multipath environments. This paper presents a ranging performance analysis of a chirp signal and suggests a method to suppress multipath error by using a type of non-linear chirp signal. Multipath ranging performance is evaluated using a conventional linear chirp signal and the proposed non-linear chirp signal. We verify the feasibility of both methods using two-ray multipath model simulation. Our results demonstrate that the proposed non-linear chirp signal can successfully suppress the multipath error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.