Abstract

We describe a novel strategy for fabrication of a unique minky-dot-fabric-shaped composite of well-organized porous TiO2 microspheres and reduced-graphene-oxide (rGO) sheets used as an anode material in lithium-ion batteries. In this composite, the porous TiO2 microspheres act as hosts for fast and efficient lithium storage while the rGO sheets serve as highly conductive substrates. Such unique structural features assure a large contact area between the electrolyte and the electrode, favorable for the diffusion of electrons and Li+ ions. Moreover, they can accommodate volume changes of the electroactive TiO2 materials readily so as to improve the overall electrical conductivity between the electrodes during electrochemical processes. In electrochemical tests, the TiO2–rGO composites used as anodes in lithium-ion batteries exhibited superior performance with a reversible capacity of 100 mA h g−1 at 10 C for up to 100 cycles, as compared to 58 mA h g−1 at 10 C for up to 100 cycles from pure TiO2, suggesting great potential of this unique composite to function as high-rate lithium-ion battery materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.