Abstract

A multiple-input–multiple-output dielectric resonator antenna with enhanced isolation is proposed in this letter for the future 5G millimeter (mm)-wave applications. Two rectangular dielectric resonators (DRs) are mounted on a substrate excited by rectangular microstrip-fed slots underneath DRs. Each DR has a metal strip printed on its upper surface moving the strongest part of the coupling field away from the exciting slot to improve the isolation between two antenna elements. The proposed antenna obtains a simulated impedance bandwidth ( S 11 ≤ –10 dB) from 27.25 to 28.59 GHz, which covers the 28 GHz band (27.5–28.35 GHz) allocated by the Federal Communications Commission for the 5G applications. A maximum improvement of 12 dB on the isolation over 27.5–28.35 GHz is achieved. The mechanism of the isolation improvement and the design procedure are given in this letter. A prototype is manufactured and measured as a validation of the proposed decoupling method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.