Abstract
Urban street design choices relating to tree planting, building height and spacing, ground cover, and building façade properties impact outdoor thermal exposure. However, existing tools to simulate heat exposure have limitations with regard to optimization of street design for pedestrian cooling. A microscale three-dimensional (3D) urban radiation and energy balance model, Temperatures of Urban Facets for Pedestrians (TUF-Pedestrian), was developed to simulate pedestrian radiation exposure and study heat-reducing interventions such as urban tree planting and modifications to building and paving materials. TUF-Pedestrian simulates the spatial distribution of radiation and surface temperature impacts of trees and buildings on their surroundings at the sub-facet scale. In addition, radiation absorption by a three-dimensional pedestrian is considered, permitting calculation of a summary metric of human radiation exposure: the mean radiant temperature (TMRT). TUF-Pedestrian is evaluated against a unique 24-h observational dataset acquired using a mobile human-biometeorological station, MaRTy, in an urban canyon with trees on the Arizona State University Tempe campus (USA). Model evaluation demonstrates that TUF-Pedestrian accurately simulates both incoming directional radiative fluxes and TMRT in an urban environment with and without tree cover. Model sensitivity simulations demonstrate how modelled TMRT and directional radiative fluxes respond to increased building height (ΔTMRT reaching -32°C when pedestrian becomes shaded), added tree cover (ΔTMRT approaching -20°C for 8m trees with leaf area density of 0.5 m2m-3), and increased street albedo (ΔTMRT reaching + 6°C for a 0.21 increase in pavement albedo). Sensitivity results agree with findings from previous studies and demonstrate the potential utility of TUF-Pedestrian as a tool to optimize street design for pedestrian heat exposure reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.