Abstract

A micromechanical model for effective elastic properties of particle filled acrylic composites with imperfect interfacial bonds is proposed. The constituents are treated as three distinct phases, consisting of agglomerate of particles, bulk matrix and interfacial transition zone around the agglomerate. The influence of the interfacial transition zone on the overall mechanical behavior of composites is studies analytically and experimentally. Test data on particle filled acrylic composites with three different interfacial properties are also presented. The comparison of analytical simulation with experimental data demonstrated the validity of the proposed micromechanical model with imperfect interface. Both the experimental results and analytical prediction show that interfacial conditions have great influence on the elastic properties of particle filled acrylic composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.