Abstract

This article describes the design and fabrication of a microfluidic mixing system optimized for ultrasensitive optical measurements. Channels are replica-molded in polydimethylsiloxane elastomer and sealed with fused-silica coverglass. The resulting devices have broad chemical compatibility and extremely low fluorescence background, enabling measurements of individual molecules under well-characterized nonequilibrium conditions. Fluid delivery and pressure connections are made using an interface that allows for rapid assembly, rapid sample exchange, and modular device replacement while providing access for high numerical aperture optics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.