Abstract

Fatigue failures of machine components remain a topic of relevant importance in the industrial world. They usually occur from geometrical features such as holes, notches, corners and grooves, whose actual influence is not well estimated in the design phase. Cast parts made in gray cast iron are typical examples of components difficult to design in fatigue because they are simultaneously characterized by complex geometries and microstructure. In this contribution the issue is discussed starting from the failure analysis of a cyclically pressurized hydraulic component. The work consists of an experimental procedure, i.e. the fatigue characterization of the material on specimens extracted from cast parts, and of a numerical design activity, i.e. the prediction of life time according to the critical distance method [Taylor D. Crack modelling: a technique for the fatigue design of components. Engng Fail Anal 1996;3(2):129–36]. The implication is that cracks and localized damage begin to appear in the microstructure of gray cast iron at sharp notches from the first cycles of loading. In order to obtain a correct prediction, the fatigue design should adopt fracture mechanics arguments to determine non-propagating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.