Abstract

The management of spent nuclear fuel assemblies of nuclear reactors is a priority subject among member states of the International Atomic Energy Agency. For the majority of these countries, the destination of such fuel assemblies is a decision that is yet to be made and the “wait-and-see” policy is thus adopted by them. In this case, the irradiated fuel is stored in on-site spent fuel pools until the power plant is decommissioned or, when there is no more racking space in the pool, they are stored in intermediate storage facilities, which can be another pool or dry storage systems, until the final decision is made. The objective of this study is to propose a methodology that, using optimization algorithms, determines the ideal time for removal of the fuel assemblies from the spent fuel pool and to place them into dry casks for intermediate storage. In this scenario, the methodology allows for the optimal dimensioning of the designed spent fuel pools and the casks’ characteristics, thus reducing the final costs for purchasing new Nuclear Power Plants (NPP), as the size and safety features of the pool could be reduced and dry casks, that would be needed anyway after the decommissioning of the plant, could be purchased with optimal costs. To demonstrate the steps involved in the proposed methodology, an example is given, one which uses the Monte Carlo N-Particle code (MCNP) to calculate the shielding requirements for a simplified model of a concrete dry cask. From the given example, it is possible to see that, using real-life data, the proposed methodology can become a valuable tool to help making nuclear energy a more attractive choice costwise.

Highlights

  • In 2018 there were a total of 451 nuclear reactors in operational conditions in the world

  • The aim of the study presented in this paper is to propose a methodology to optimize the time to remove fuel elements from the initial storage spent fuel pools at reactor sites, taking into account the refueling schedule of the power plant, the isotopic concentrations in the fuel at the time of its removal from the pool and its storage costs

  • The values for dose rate limits and unit prices for the storage per fuel assembly at the pool and cubic meter of concrete were varied in relation to each other

Read more

Summary

Introduction

In 2018 there were a total of 451 nuclear reactors in operational conditions (i.e., connected to the electrical grid of their countries) in the world. These reactors made up a total of 0,391 TW of installed electrical power. (iii) The “wait-and-see” policy, when the fuel is stored indefinitely and the decision on either reprocessing or disposal is made at a later moment. Any one of these strategies demands that the spent fuel is stored for an initial period of time Depending on the operator’s decision, the spent fuel discharged from a nuclear reactor goes through one of the possible management strategies listed below [2].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.