Abstract

The performance of the pattern matching algorithms based on bit-parallelism degrades when the input pattern length exceeds the computer word size. Although several divide-and-conquer methods have been proposed to overcome that limitation, the resulting schemes are not that much efficient and hard to implement. This study introduces a new fast bit-parallel pattern matching algorithm that is capable of searching patterns of any length in a common bit-parallel fashion. The proposed bit-parallel length invariant matcher (BLIM) is compared with the Shift-Or and bit-parallel non-deterministic matching (BNDM) algorithms along with the standard Boyer-Moore and Sunday's quick search, which are known to be the very fast in general. Benchmarks have been conducted on natural language, DNA sequence, and binary alphabet random texts. Besides the length invariant architecture of the algorithm, experimental results indicate that on the average BLIM is 18%, 44%, and 6% faster than BNDM, which is accepted as one of the fastest algorithms of this genre, on natural language, DNA sequence and binary random texts respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.