Abstract
To investigate the mechanisms of charge transport (CT) across biomolecular tunnel junctions, it is required to make electrical contacts by a non-invasive method that leaves the biomolecules unaltered. Although different methods to form biomolecular junctions are available, here we describe the EGaIn-method because it allows us to readily form electrical contacts to monolayers of biomolecules in ordinary laboratory settings and to probe CT as a function of voltage, temperature, or magnetic field. This method relies on a non-Newtonian liquid-metal ally of Ga and In with a few nm thin layer of GaOx floating on its surface giving this material non-Newtonian properties allowing it to be shaped in to cone-shaped tips or stabilized in microchannels. These EGaIn structures form stable contacts to monolayers making it possible to investigate CT mechanisms across biomolecules in great detail.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have