Abstract

In this work, a fabrication process of high crystallinity CZTSSe absorber layer is presented. The CZTS structure is firstly prepared by spin-coating method then the film is converted into CZTSSe via selenization process using graphite box and tube furnace. Se powder has been used as source of selenizing vapors. By keeping the annealing temperature as constant and changing the mass of Se powder, the structural, optical, electrical properties, and composition of CZTSSe thin films are investigated. With substitution of S by Se, the smoothly, densely packed morphology and large grain size have been achieved. At optimal Se mass, the p-type CZTSSe film has bandgap energy, hole concentration, and resistivity of 1.27 eV, 1.7 × 1019cm−3 and 0.57 Ω.cm respectively which are suitable for photovoltaic application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.