Abstract

This paper presents a numerical method for verifying the existence and local uniqueness of a solution for an initial-boundary value problem of semilinear parabolic equations. The main theorem of this paper provides a sufficient condition for a unique solution to be enclosed within a neighborhood of a numerical solution. In the formulation used in this paper, the initial-boundary value problem is transformed into a fixed-point form using an analytic semigroup. The sufficient condition is derived from Banach's fixed-point theorem. This paper also introduces a recursive scheme to extend a time interval in which the validity of the solution can be verified. As an application of this method, the existence of a global-in-time solution is demonstrated for a certain semilinear parabolic equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.